
Valet Services:

Improving Hidden Servers

with a Personal Touch

Lasse Øverlier1,2 and Paul Syverson3

1 Norwegian Defence Research Establishment, P.B. 25, 2027 Kjeller, Norway
lasse.overlier@ffi.no, http://www.ffi.no/

2 Gjøvik University College, P.B. 191, 2802 Gjøvik, Norway
lasse@hig.no, http://www.hig.no/

3 Center for High Assurance Computer Systems
Naval Research Laboratory Code 5540, Washington, DC 20375
syverson@itd.nrl.navy.mil, http://chacs.nrl.navy.mil/

Abstract. Location hidden services have received increasing attention
as a means to resist censorship and protect the identity of service opera-
tors. Research and vulnerability analysis to date has mainly focused on
how to locate the hidden service. But while the hiding techniques have
improved, almost no progress has been made in increasing the resistance
against DoS attacks directly or indirectly on hidden services. In this pa-
per we suggest improvements that should be easy to adopt within the
existing hidden service design, improvements that will both reduce vul-
nerability to DoS attacks and add QoS as a service option. In addition
we show how to hide not just the location but the existence of the hidden
service from everyone but the users knowing its service address. Not even
the public directory servers will know how a private hidden service can
be contacted, or know it exists.

1 Introduction

Hidden Servers are a means to offering attack-resistant services. A server that
is accessible but hidden can resist a variety of threats simply because it cannot
be found. These threats include physical and logical threats to the service itself.
But they also include threats to the people offering the service and attempts to
prevent general access to the service provided.

Since 2004, hidden services have been offered that use Tor to underly ser-
vices offered from hidden locations. These were introduced [11] as resistant to
distributed DoS since they were designed to require a DDoS attack on the entire
Tor network in order to attack a hidden server.

Recent events have placed Tor prominently in the international media as a
tool to allow people to access Internet sites even if they are behind filtering
firewalls or if the large commercial search engines are cooperating with local au-
thorities to provide only censored offerings. However, at least as important as ob-
taining information is the ability for people in these environments to disseminate

green
Text Box
NRL Release Number 06-1226-1338

information. Besides resisting DDoS and physical threats, hidden servers have
also been recommended for preserving the anonymity of the service offerer and
to resist censorship. Specifically, Undergroundmedia.org has published a guide to
“Torcasting” (anonymity-preserving and censorship-resistant podcasting). And
both the Electronic Frontier Foundation and Reporters Without Borders have
issued guides that describe using hidden services via Tor to protect the safety of
dissidents as well as to resist censorship. Even in more open societies bloggers
have lost their jobs because employers were unhappy about the blog sites.

Hidden services thus have a clear value and appeal. But, their resistance
to some adversaries is limited. In [17], we demonstrated location attacks on
hidden servers deployed behind Tor that locate a hidden server quickly and
easily, often within minutes. The suggested countermeasures to those attacks
have been implemented. But other threats remain. Hidden servers are accessed
via a publicly listed small set of relatively long-lived Introduction Points. Anyone
with access to a hidden service can easily discover the Introduction Points. This
can lead to a DoS race that the hidden server is likely to lose, since setting
up Introduction Points and disseminating associated information is somewhat
resource intensive. To address this limitation in the current hidden service design
we propose the introduction of Valet nodes. There can be far more valet nodes
than introduction points associated with a hidden server. Relatedly, it is much
easier to generate and disseminate valet node information than introduction
point information.

In Sect. 2 we present previous work on hidden services and availability to-
gether with a brief look into how Tor’s hidden services work. In Sect. 3 we give
a description of the valet node design. In Sect. 4 we discuss the security of the
design. In Sect. 5 we present our conclusions.

2 Previous Work on Availability and Hidden Services

Location hidden services build upon anonymous communication, which was first
described by David Chaum [7] in 1981. Most of the early work in this area
focused on high-latency communications, like email. Low-latency anonymous
communication, such as currently dominates Internet traffic, got new focus in
the late 1990’s with the the introduction of onion routing [14]. In 1995, shortly
before onion routing was initially deployed, the first low-latency commercial
proxy for web traffic, the Anonymizer [2] became available. Proxy services like
Anonymizer and Proxify [19] work by mixing traffic from multiple clients through
a single point so that any accessed servers are only able to trace back clients
to the anonymizing proxy, and not to the actual users. This requires complete
trust in the proxy provider and will unfortunately be easy to abuse since we now
have a single point of failure, a single point of compromise and a single point of

attack.
Distributed low-latency anonymous communication systems include the orig-

inal onion routing [14], the Freedom Network [6] (deployed in 1999), and the
current version of onion routing, Tor [11]. These are more resistant to the above

mentioned vulnerabilities because they proxy communication through multiple
hops; at each hop the communication changes its appearance by adding or re-
moving a layer of encryption (depending on whether it is traveling from the
circuit originator to responder or vice versa). They all use public-key cryptog-
raphy to distribute session keys to the nodes along a route, thus establishing a
circuit. Each session key is shared between the circuit initiator (client) and the
one node that was given that key in establishing the circuit. Data that passes
along the circuit uses these session keys. Both Freedom and Tor have a default
circuit length of three nodes. For more details consult the above cited work.
Another low-latency distributed system is JAP/Web MIXes [4]. It is based on
mix cascades (all traffic shares the same fixed path) and thus, unlike the above
systems, its security is not based on hiding the points at which traffic enters and
leaves the network. It is thus not directly usable for hidden services as they are
described below.

The property of hiding the location of a service in order to sustain availability
was introduced in Ross Anderson’s Eternity Service [1]. Focusing on availabil-
ity and longevity of data, the Eternity service stores files at multiple locations,
encrypted and prepaid for, during a certain period of time. Freenet[8] was the
first system to use a peer-to-peer network with the goal of censorship resistance
enabling a service to have (some) availability even when only one of the nodes
is available. Splitting the stored files up into minor pieces and storing them on
multiple nodes of the network also added robustness. However it has numerous
security vulnerabilities, e.g., clients must trust the first nodes they connect to
for all network discovery and hence anonymity protection. Both Freenet and
GNUnet[3] communication builds upon mix-net[7] technology for sending mes-
sages to other nodes, and must trust the availability of the underlying network.
Publius [15] was designed to guarantee persistence of stored files, like Eternity
and unlike Freenet. Tangler [27] additionally makes newly published files depen-
dent on previous ones, called entanglement, thereby distributing incentives for
storing other nodes’ files as well. Free Haven [10] uses a network of nodes with
a reputation system involving contracts between nodes to store data for oth-
ers. But Free Haven does not define the underlying anonymous communication
channel, and this is where many of the availability issues are located.

Tor is not a publishing service and does not store information like the above
mentioned censorship-resistant systems, but Tor facilitates something called hid-

den services. The hidden service design supports the anonymous access of com-
mon services, e.g. a web service, enabling users of the network to connect to
these services without knowing the server’s location (IP address). Tor builds this
functionality upon the assumption that if a node cannot be located, it cannot be
(easily) stopped or in other means shut down. The hidden service design relies
on a rendezvous server, which mates anonymous circuits from two principals so
that each relies only on himself to build a secure circuit. The first published
design for a rendezvous service was for anonymous ISDN telephony [18] rather
than Internet communication. As such it had very different assumptions and
requirements from the rendezvous servers we describe, some of which we have

already noted above. A rendezvous server for IRC chat was mentioned in [14];
however, the first detailed design for a rendezvous server for Internet communi-
cation was by Goldberg [13]. It differs in many ways from rendezvous servers as
used by Tor’s hidden services, and we will not discuss Goldberg’s design further
here.

2.1 Location-hidden Services in Tor

In the current implementation of Tor, a connection to a hidden service involves
five important nodes in addition to the nodes used for basic anonymous commu-
nication over Tor.

– HS, the Hidden Server offering some kind of (hidden) service to the users of
the Tor network, e.g. web pages, mail accounts, login service, etc.

– C, the client connecting to the Hidden Server.
– DS, a Directory Server containing information about the Tor network nodes

and used as the point of contact for information on where to contact hidden
services.

– RP, the Rendezvous Point is the only node in the data tunnel that is known
to both sides.

– IPo, the Introduction Point where the Hidden Server is listening for connec-
tions to the hidden service.

A normal setup of communication between a client and a hidden service is
done as shown in Fig. 1. All the displayed connections are anonymized, i.e., they
are routed through several anonymizing nodes on their path towards the other
end. Every arrow and connection in the figure represents an anonymous channel
consisting of at least two or more intermediate nodes. (Hereafter, we use ‘node’
to refer exclusively to nodes of the underlying anonymization network, some-
times also called ‘server nodes’. Although we are considering the Tor network
specifically, the setup would apply as well if some other anonymizing network
were used to underly the hidden service protocol. Unlike the other principals
above, C and HS may be anonymization nodes or they may be merely clients
external to the anonymization network.)

First the Hidden Server connects (1) to a node in the Tor network and asks if
it is OK for the node to act as an Introduction Point for his service. If the node
accepts, we keep the circuit open and continue; otherwise HS tries another node
until successful. These connections are kept open forever, i.e., until one of the
nodes restarts or decides to pull it down.4 Next, the Hidden Server contacts (2)
the Directory Server and asks it to publish the contact information of its hidden
service. The hidden service is now ready to receive connection requests from
clients.

In order to communicate with the service the Client connects (3) to DS and
asks for the contact information of the identified service and retrieves it if it
exists (including the addresses of Introduction Points). There can be multiple

4 In Tor any node in a circuit can initiate a circuit teardown.

Fig. 1. Normal use of hidden services and rendezvous servers

Introduction Points per service. The Client then selects a node in the network
to act as a Rendezvous Point, connects (4) to it and asks it to listen for con-
nections from a hidden service on C’s behalf. The Client repeats this until a
Rendezvous Point has accepted, and then contacts (5) the Introduction Point
and asks it to forward the information about the selected RP.5 The Introduc-
tion Point forwards (6) this message to the Hidden Server, which determines
whether to connect to the Rendezvous Point or not. If OK, the Hidden Server
connects (7) to RP and asks to be connected to the waiting rendezvous circuit,
and RP then forwards (8) this connection request to the Client.

Now RP can start passing data between the two connections and the result
is an anonymous data tunnel (9) from C to HS through RP.

2.2 Threats to Hidden Services

Until now most papers on anonymizing networks have focused on the threats
of locating users and services in the network, and addressed different threat
scenarios like intersection attacks [22, 29] and traffic analysis [21, 24].

A large adversary will be able to correlate network traffic going into and
out from a distributed anonymizing network. For hidden services inside such a
network this will also be true if large (or critical6) portions of the network can
be observed at any given time. Using techniques from Serjantov and Sewell [24]
even a smaller adversary can match timing to and from nodes in the network.
If a suspected communication channel is to be verified, e.g. “A is talking to B”,
this will quite easily be confirmed by simple statistical methods. Murdoch and

5 Optionally, this could also include authentication information for the service to de-
termine from whom to accept connections.

6 E.g. smaller bounded parts of the network including the communicating nodes.

Danezis [16] controlled a service accessed by clients through the Tor network
and thereby were able to trace the route of traffic through the Tor network (but
not all the way to the client). This attack involved probing the entire network.
It was achieved on an earlier and much smaller Tor network than now exists.

In [17], we demonstrated on a live anonymizing network how effective in-
tersection attacks can be in locating hidden servers and clients. The paper also
describes other vulnerabilities in the hidden services design that makes it simple
for an attacker to locate the Hidden Server.

All these attacks address how to locate either the user or the hidden service.
But there are other threats that are important, like preventing Denial-of-Service
attacks. This is of major concern when we are trying to achieve availability for
the service, because even if the adversary cannot locate the server, the next
best thing will be to shut down the possible access methods (or channels) for
contacting it.

In [25] Stavrou and Keromytis describes how to use an indirection-based
overlay network (ION) for DDoS protection by using packet replication and
packet path diversity combined with redirection-based authentication. This is
currently not applicable to the current implementation of the Tor hidden service
protocol as Tor is based on TCP communication and the described ION requires
a stateless protocol.

In the current Tor design, hidden services publish their contact information
on a directory server describing to any user how she can connect to them. This
information contains, amongst other things, a signed public key and a list of in-
troduction points to contact in order to get a connection to the hidden service (cf.
Sect. 2.1). This list can be abused by an attacker targeting all the introduction
points with a DoS attack and thereby disabling the hidden service.

In addition, if a node is chosen to be an introduction point for a hidden
service, it will be able to easily discover this through the general availability of
the contact information retrieved from the directory services. This availability
makes it possible for an adversary to shut down a service by attacking its intro-
duction points, and also makes it possible to stop some selected services, e.g. by
threatening all introduction points to avoid being associated with a particular
service descriptor.

The directory server will also be able to see all hidden services that are
published and can enumerate them, identify when they first became available,
identify all their introduction points, and contact all the services (that do not
require additional authorization).

If the directory servers are compromised, or if all of them are subject to a DoS
attack, this could effectively shut down the entire network. For more information
on this consult [11]. We do not address this possibility here.

3 Valet Service

Valet service adds another layer of protection to the hidden service design. By
re-enabling some parts of the reply-onion technology from the original onion

routing design [14], we will hide the Introduction Points from the users, and we
will also extend the functionality of the hidden service.

3.1 Overview

We introduce a method of accessing the Introduction Points without knowing
their location. This is quite similar to the situation of hiding the hidden service
in the first place, but now we want to hide more nodes (all Introduction Points),
and we want to make only a few of the contact points visible to any user or node
in the network at a specific time.

To accomplish this we introduce Valet Service nodes, or simply Valet nodes.
These nodes are the new contact points for the Client, they can be different for
different clients or groups of clients, and will enable the service to maintain a
limited number of Introduction Points, but multiple contact points. So neither
the public nor the real users know about the identity of several of these nodes at
a time. We also avoid having the Valet nodes knowing which services they are
assisting, and we make sure that the Valet nodes do not know more than one
Introduction Point per connection request. The information about these Valet
Service nodes are found in Contact Information tickets which will be discussed
later.

Fig. 2. Use of Valet Service

In Fig. 2 we illustrate that the Hidden Server tunnels (1) out to at least
one Introduction Point, and creates a listener for contact requests. The Client
tunnels (2) out to a Rendezvous Point as in the original setup, and constructs
the rendezvous information (including, e.g., authentication information) that it
will send to the Hidden Server.

Using information about the Valet Service nodes in the Contact Information
ticket, the Client tunnels (3) out to the Valet node. The Valet node receives a

Valet token encrypted with its public key, and containing information about the
Introduction Point. The Valet node then extends (4) the circuit to the Intro-
duction Point so that the Client now can communicate directly (5) and securely
with the Introduction Point without knowing who this is, just that it is commu-
nicating with a node authorized by the Hidden Server.

The Client then uses information from the Contact Information ticket to
authenticate the connection through the Introduction Point (IPo) and delivers
to it the client’s message to be forwarded (6) to the Hidden Server.

Based on the received information, the hidden service now determines whether
to contact (7) the Rendezvous Point and complete the anonymous tunnel (8&9)
setup with the Client, or to drop the request.

There are several challenges in this extension of the protocol, e.g., lost and
expired tickets and the selection of contact information, but we will address these
after a more detailed description of how valet services work.

3.2 Description

We divide the connection phase of contacting the hidden service into five parts:

1. The Hidden Server’s setup of the Introduction Points and the construction
and distribution of the Contact Information tickets.

2. The Client setting up a Rendezvous Point and contacting the Valet node.
3. The Valet node extending the circuit to the Introduction Point.
4. The Client authenticating and sending contact and authentication informa-

tion to the Introduction Point, which forwards this to the Hidden Server.
5. The Hidden Server contacting the Rendezvous Point and finalizing the con-

nection with the Client.

We will address the construction and distribution of the Contact Information
tickets at the end so the reader will learn how the information is used and hence
better understand why it contains what it does.

Client contacting Valet Service node Following Fig. 2, we assume that the
Hidden Server has set up (1) a set of Introduction Points to be used by the clients
and distributed information about how to connect to them. (See discussion of
“Distributing tickets” below in this section.)

Contact Information tickets are shown in Table 1. Each contains a signed list
of Valet nodes that are allowed to contact the Introduction Points and optional
authentication information.

Before the contact to the Valet node can be completed the Client must first
have selected a Rendezvous Point and connected to it (2) through an anonymiz-
ing tunnel. The Client will instruct RP to listen for authenticated connections
and pass this RP contact information along to the Hidden Server.

Now the Client selects one of the Valet nodes listed in the Contact Informa-
tion ticket and constructs a tunnel (3) to it, similar to the tunnel it created to
the Introduction Point in the original version.

V aletServiceNode1 One Valet node to forward the Client’s information to an
Introduction Point

T imestampV S1 Expiry time of this Valet Token
V aletToken1 Identifier for this Valet’s connection to one or more Intro-

duction Points, encrypted with the Valet node’s public key
PublicServiceKeyIPo1 Provides the client with the public service key of IPo1

V aletServiceNode2&3... Other Valet node(s)

T icketID Ticket identifier for client to show to IPo and HS
T imeStampCI Validity period for information in Contact Information

ticket
AuthorizeCtoHS Optional authorization information for ticket (or for C) to

connect to HS
Table 1. Contact Information ticket

Valet node contacting Introduction Point At this point the Client needs to
extend the circuit to the Introduction Point. The extra functionality of adding
the Valet node requires that we must have a method of assuring that we are
talking to the Introduction Point without knowing its location or public key.
This can be solved by having the Introduction Point associate a special service

key with each associated hidden service contact point. This IPo service key pair
and a corresponding key identifier, is generated by the Hidden Server, and the
private part of the key pair together with the key identifier is transferred to the
Introduction Point upon setup of the listener. In other words, when acting as an
Introduction Point, the node will use the given private key for authenticating in
an extension of the tunnel to it, and not its usual private node key. In addition
the Introduction Point is told which Valet nodes are allowed to use this key
when connecting. The public part of the service key is sent to the client through
the Contact Information ticket shown in Table 1. The Introduction Point is not
given the public service key thus making it harder to find out the hidden service
with which it is associated.

IPo1 Identity of Introduction Point
T imeStampIPo1 Valet Token’s validity period

{V aletIdentifierIPo1}sign,enc Identifies the connection at Introduction Point IPo1

→ privateIPo1ServiceKeyID The key for IPo1 to use for extension of the circuit
→ V aletServiceNodeID1 Identifies the valet node allowed to extend to IPo1

→ T imeStampIPo1 Valet Identifier’s validity period
Table 2. Content of Valet Token including the Valet Identifier

The Client must send information to the Valet Service node that the Client
itself is unable to read. The Client finds this information in the Contact Infor-
mation ticket as the Valet Token, see Table 2, and it is encrypted (by the Hidden
Service) using the public key of the Valet Service node. The token contains the

identity of the Introduction Point, a time stamp, and a Valet Identifier. The
Valet Identifier is used for identifying to the Introduction Point what service key
to use and for confirming which Valet Service node is allowed to extend to it
using this key. The Valet Identifier is signed with the private service key (IPo
verifies the signature by producing the signature itself) and encrypted with the
public node key of the Introduction Point.

But the Client also needs to give information to the Introduction Point upon
extension of a tunnel similar to the way a usual tunnel extension is done. The
message, an Extend Tunnel Message, contains normal circuit extension parame-
ters, including a DH start gx, added replay protection and identification of the
Valet node. The Extend Tunnel Message is encrypted with the public part of the
service key to ensure that only the Introduction Point can receive the message.

So the Client creates an Extend Tunnel Message and submits (3) this together
with the Valet Token to the Valet node asking it to extend the tunnel (circuit) to
the Introduction Point inside the Valet Token. The Valet node extracts the iden-
tity of the Introduction Point from the Valet Token and extends (4) the circuit
to this node by forwarding the Extend Tunnel Message. The Introduction Point
checks the message for the correct Valet node, correct key ID and signatures, and
replies to the Client to complete the DH exchange using gy and a verification of
correct key, as in current design. The Client now has a secure communication
channel (5) to the Introduction Point without knowing its real identity. And the
Introduction Point knows which of the hidden service descriptors the channel is
associated with, and as before it knows nothing about the Client’s identity.

Client contacting Hidden Service Now the Client has to send the Ren-
dezvous Point’s contact information to the Hidden Service via the Introduction
Point. The Client sends (5) the T icketID found in the Contact Information ticket
to the Introduction Point to identify the use of the ticket, and it also attaches
a time stamp and the information going to the Hidden Service (encrypted with
the Hidden Service’s public key). The Introduction Point checks the T icketID

and T imeStampIPo and then forwards (6) the Hidden Server message (see Ta-
ble 3) containing contact information of the Rendezvous Point together with the
first part of a DH-key exchange and optional authentication information. If we
wanted to identify the Valet node used for contacting the hidden service we could
do this in the authentication field. The message is protected from interception
by the Valet node via the DH-key the Client exchanged with IPo.

Hidden Server contacting Rendezvous Point After authorizing the con-
nection from the Client, the Hidden Server connects (7) to the Rendezvous Point
to finalize the connection of the anonymous tunnel.

The Rendezvous Point authenticates the request based on the RendezvousPoint

information the Hidden Server received from the Client (Table 3), and then for-
wards (8) the finalization of the Client to Hidden Server DH key exchange with
the (optional) new Contact Information ticket to the Client. Then the Ren-

T icketID Information for IPo to verify ticket access before forwarding mes-
sage to HS

T imeStampIPo to verify validity period

The following is encrypted with HS’s public key

RendezvousPoint Contact and authentication information for HS to contact the RP
gx First part of Client’s ephemeral DH-exchange with Hidden Server
T imeStampHS period of validity of this request
T icketID Information to identify the ticket to HS
AuthorizeCtoHS (optional) authentication information for ticket or for C towards

HS
Table 3. Message from Client to Introduction Point

dezvous Point connects the two tunnels forming (9) the authenticated, secure
and anonymous channel between the Client and the Hidden Server.

Constructing Contact Information tickets Uptime history and bandwidth
availability are the most important factors when the hidden service is construct-
ing contact information tickets for its clients. 7 The hidden service first has to
select a set of nodes with high uptime to use as Introduction Points and as
Valet nodes. For each of the Introduction Points the hidden service constructs
a service-access public-key pair and submits one part, the “private”8 key to
the Introduction Point, and the other “public” key is to be put into the Con-
tact Information ticket as shown in Table. 1. The key pair is given an identifier,
privateIPo1ServiceKeyID, to help identify the use of the correct key upon con-
nection requests. In addition the hidden service constructs T icketIDs allowing
different clients (i.e. different tickets) to connect to the same Introduction Point.
These T icketIDs are sent to the Introduction Point together with the private
key and the key identifier upon setup of the Introduction Point’s listener.

So after selecting a Valet node, the hidden service is now ready to construct
the Contact Information ticket. First it packs the service key ID together with a
validity period and the identity of the Valet node into the Valet Identifier. The
private service key is then used to sign the Valet Identifier before it is encrypted
with the public node key of the Introduction Point (cf. Table 2).

The Valet Identifier is then put into the Valet Token together with a time
stamp and the identity (the public node key) of the Introduction Point. The
Valet Token is encrypted with the public key of the Valet node and put into
the Contact Information ticket together with its public node key and the public
service key of the associated Introduction Point.

The Contact Information ticket is now built up of identifiers of Valet nodes,
a Valet node validity period, and the corresponding Valet Token with the asso-

7 In Tor there currently exists no certification of this information as this would require
active measurements of a nodes’ capacity and availability during operation.

8 The key is generated by HS not IPo, but used as a private key by HS (signing) and
IPo (decrypting).

ciated public service key of the Introduction Point. There can be as many Valet
nodes listed in a ticket as the hidden service finds appropriate. The ticket will
also contain a T icketID, a validity period for the ticket, and optional authenti-
cation information to be used when the Client connects to the Hidden Server.

Distributing tickets For distribution of the tickets we must look at two different
scenarios; authorized users only or also allowing anonymous users. The different
vulnerabilities of these will be discussed in Sect. 4. In either scenario, although
especially applicable to anonymous users, another distinction is whether tradi-
tional directory servers are used or distributed hash tables (DHTs). We first
present distribution via directory servers since this is closer to the current usage
over the Tor network.

By using the protocol described here the hidden service will be able to keep
track of users and build a “reputation” for a user or a group of users. This is
of course something an authenticated user might be subjected to by a service
anyway, but we will use this to create QoS for both types of users, authenticated
and anonymous.

Each time a user is connecting to a hidden service he either sends pub-
licly known information (contained in a ticket publicly available at a Directory
Server), or some authentication based on information he shares with the hidden
service. Now the hidden service is able to set up different QoS based on what
category the client is in. E.g. an authorized client can have access to a larger
number of Valet nodes, Introduction Points or even just use higher bandwidth
nodes in IPo and RP connections than an anonymous user will get. We can also
imagine that a hidden service will use more trusted or higher bandwidth nodes
in some of its tunnels based on this information. Anonymous users may also
be given different QoS based on previous experience, e.g. an anonymous user
connecting for the thousandth time could get better (or worse?) QoS than a
first time user. This would imply either a pseudonymous user profile or a bearer
instrument for tracking reputation.

In the existing hidden service design one major problem is that everyone can
find all the Introduction Points to any service for which they know the .onion

address. Another threat to security is that the Directory Server is able to identify
and count all services and their startup times, and in addition locate all their
contact information since the listings are not encrypted (but signed). We suggest
in this paper a simple countermeasure addressing these issues.

First we must look at the two different scenarios:

1. The service is to be publicly available if a client knows the .onion address.
2. The service is open to authorized clients with valid tickets already received,

e.g. through an off-line distribution channel, and will not use the Directory
Servers.

The latter scenario is managed by the functionality of the network. As noted,
ticket control is then maintained through the connections, but to counter the
first scenario we propose the following simple scheme.

The Client has somehow (e.g. by a link on a web page, phone call, letter, etc.)
received the q.onion address of the service to contact, where q is derived from
the public key of the service, e.g. q = hash(PK + value). We use this address
to create the service descriptor index, e.g. hash(q +′ 1′), to use at the Directory
Server. The downloaded value, Q, is the Content Information ticket encrypted
with a symmetric encryption scheme using a key derived from the public key,
e.g., hash(q +′ 2′). So both the descriptor index and the descriptor content are
hidden from the Directory Server. Now a client must be in possession of the
public key (or the q.onion) address of the hidden service in order to find and
decrypt its Contact Information ticket. After receiving Q, the Client extracts the
content, finds the public key, checks whether the signature matches, and does
a confirmation to see if this key really is the one corresponding to the q.onion

address. If so, she has confirmed receiving correct contact information for this
service.

Since there is no way of deriving hash(q +′ 2′) from hash(q +′ 1′) without
having q, the Directory Server cannot find the contact information of unknown
.onion addresses.

So what about private entries? If we want to permit groups of users to connect
with different QoS, the hidden service gives them different cookies, grouping
them so they e.g., can use hash(q +′ 1′ + cookie) for lookup, and hash(q +′ 2′ +
cookie) for decrypting. Now we are also making it impossible for the Directory
Server to count how many services it has listed. In addition, the cookies can be
based on the client’s authentication data, enabling only that specific client to
download and decrypt the associated Contact Information ticket.

The scheme should also be expanded by using a date/time value inside the
hash calculation to include a time period, e.g., current date, so a listing can exist
anonymously without revealing when the service started to exist. Combining this
with a time stamp could have the Directory Server store the entry for a longer
(or shorter) period of time than default. And of course for authenticated users
we only need to give the Client several Contact Information tickets with varying
lifetimes. Typically any client should always have a long-term ticket and one or
more short-term tickets.

In order to verify an update of information inside the directory service during
the entry’s life time, we propose a simple reverse hash chain scheme where the
initial contact to the Directory Server is followed by an iterated hash value,
vn = hashn(v), known only to the hidden service itself. For each update of this
index (e.g. of hash(q +′ 1′ + date)) the new encrypted ticket is accompanied by
the value, vk−1, enabling the directory server/DHT to verify the update using
vk = hash(vk−1).

To adapt to the current and future improvements in hash collision techniques
it is probably wise to increase the number of bits used in the .onion address from
today’s 80-bit (16 * base32(5-bit) characters) address to e.g. 256-bit (using 44
* base649(6-bit) characters, including an eight-bit version and extension value

9 Use “special” base64 e.g., ’/’→’-’, ’+’→’ ’

as the first byte of the address). An evaluation of hash algorithms will not be
discussed here.

Distributed Hash Tables The list of Tor servers is sensitive in at least two ways.
First, it is the means by which clients bootstrap into anonymity: we cannot
assume that clients can anonymously obtain an initial list of Tor nodes. Second,
the list of nodes is sensitive. If different sets of nodes are given to different users,
then it is possible to separate the source of traffic according to the nodes carrying
it.

Neither of these is as much of an issue for hidden services. The IP addresses
of clients acquiring information on available hidden services may be assumed
to already be anonymized. Since there is neither a need for, nor a preexisting
expectation of, an authoritative list of hidden services, partitioning is less of an
issue as well. In any case, there is nothing to prevent someone from listing at
directory servers two or more distinct sets of information for the same hidden
service and selectively announcing one or the other set to distinct individuals.

For this reason, authoritative directory servers for hidden services as a core
part of the Tor network are not necessary. Indeed, the primary motivation for
their use initially has been one of convenience. They are an available and already
used infrastructure for Tor users that distributes one kind of server information
(Tor nodes). So, it was easy to add another kind (hidden servers). Obviously it
would be better not to overload these servers in either functionality or workload.

One could set up another set of directory servers specifically for hidden ser-
vices, but given the above considerations, hidden services would seem to be an
advantageous application for distributed hash tables (DHTs), such as CAN [20],
Chord [26], Pastry [23], or Tapestry [30].

DHTs are decentralized systems that can be used to support many appli-
cations including file storage and retrieval. They are known for their efficient
tradeoffs of decentralization, scalability, robustness and routing efficiency. Their
application in anonymous communication is not as straightforward as is some-
times supposed, and require careful design to avoid security pitfalls [5, 9]. Pre-
senting a careful design is beyond the scope of this paper. However, we note
that the basic design of .onion addresses based on hashing of keys are naturally
amenable to DHTs.

4 Security

4.1 Availability

The greatest threat to availability in the original hidden service design is the
collection of all Introduction Points in the information stored on the Directory
Server. This makes it easy to either directly attack the Introduction Points, or
indirectly attack them, e.g. by threatening the Directory Server or the Introduc-
tion Point operator not to list a specific service.

By using tickets and Valet nodes we have enabled the possibility of a hidden
service to exist entirely on its own without anyone being able to identify it unless

he can either guess or by some other method get ahold of the public key (or the
.onion address) of the service. If a group of people can distribute the .onion

address in private, no one should be able to find the service used, or know of its
very existence.

We have addressed two types of hidden service users – the authorized user

and the anonymous user. The hidden service might want to offer different QoS
to the different users, in addition to the persistent and general need to provide
availability. The anonymous user might allow himself to be recognized as a previ-
ous user of the service without revealing his identity, much like the use of cookies

in HTTP[12]. For example, such an anonymous user might over time be consid-
ered trustworthy (enough) to be given higher availability and bandwidth than
plain anonymous users. So we can have QoS also for anonymous connections.
Availability and QoS for an authorized user can be very flexible, based on what
the Hidden Servers require.

In addition, in our design it is impossible for the Directory Servers to count
and identify the services as they can in the currently deployed hidden service
system. Further, they will now only be able to extract the total number of “client
groups”—not likely to be useful information. More important is the removal of
the Directory Server’s ability to confirm the existence of a service. Now a service
will be able to announce its Contact Information on a Directory Server and
remain private/unannounced.

But most important, the Introduction Points are hidden from the users, from
the Directory Servers, and from the public. We have thus enhanced the availabil-
ity of the Introduction Points. If the Contact Information tickets are publicly
accessible, we must assume that a Valet node or an Introduction Point with
reasonable effort will be able to determine which hidden service is using that
Introduction Point. But only knowing one or two Introduction Points still leaves
the others available for use.

Finding the Introduction Points is still possible for an adversary. If we select
a small number of valet nodes this will move us closer to the original hidden
service design, as the valet nodes now are the vulnerable points of a potential
DoS attack. If the number of valet nodes is huge, we make it easier for an
adversary to collect all the introduction points through owning a valet node
in all “groups” associated with each introduction point. So we have to find a
trade-off, and we expect to be better off in the lower count case.

Using n as the number of nodes in the network, c as the number of compro-
mised nodes, i as the number of Introduction Points, and v as the number of
Valet nodes per Introduction Point, we can get an expression for the probability
of revealing all the Introduction Points to the adversary. The probability Ps for
a specific combination of c compromised nodes in i +1 groups is given by Eq. 1.

Ps(xj in valet group j) =

(

G0

x0

)(

G1

x1

)

· · ·
(

Gi

xi

)

(

n
c

) =

(

n−i·v

c−x1−...−xi

)(

v

x1

)

· · ·
(

v

xi

)

(

n
c

) (1)

Here 0 is the index for being outside all the valet node groups, i.e., G0 =
n−i ·v, x0 = c−x1−x2− . . .−xi. and all other Gj are given to be v. The number
of compromised nodes c must be larger or equal to the number of introduction
points i, otherwise the probability will be zero.

P (n, c, v, i) =
∑

x1,x2...,xi

(

n−i·v

c−
P

i
1

xj

)(

v
x1

)

· · ·
(

v
xi

)

(

n
c

) (2)

The probability of the adversary having concurrent presence in all groups is
given by Eq. 2 where c ≥ i and we sum over the values: x1 = 1, . . . , min(v, c −

i + 1); x2 = 1, . . . , min(v, c− i− x1 + 2); x3 = 1, . . . , min(v, c− i− x1 − x2 + 3);

up to xi = 1, . . . , min(v, c −
∑i−1

j=1
xj), where the upper limit of the x-values is

v as indicated.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

P
ro

ba
bi

lit
y

of
 fi

nd
in

g
al

l i
nt

ro
du

ct
io

n
po

in
ts

Number of compromised nodes

v=10
v=5
v=3
v=2
v=1

Fig. 3. Probability of finding all i=3
introduction points each using v valet
nodes in a n=500 network

 0

 0.05

 0.1

 0.15

 0.2

 0 20 40 60 80 100

P
ro

ba
bi

lit
y

of
 fi

nd
in

g
al

l i
nt

ro
du

ct
io

n
po

in
ts

Number of compromised nodes

v=10
v=5
v=3
v=2
v=1

Fig. 4. Lower left corner of Fig. 3

Figure 3 and 4 shows how the use of valet nodes hides the introduction
points in the current system using three IPos. The probability is plottet against
the number of compromised nodes, c, in a system with n = 500 nodes in total.
Even when using ten valet nodes per IPo the adversary must control 25 nodes
in order to have a 10% chance of locating all three introduction points. Using
only three valet nodes per IPo the adversary must control almost 100 nodes to
achieve the same probability.

As described in Sect. 2.2 the probability of locating all introduction points
for a hidden service is 1 in the current implementation independent of how
many network nodes the adversary controls. Figure 5 shows the probability of
an adversary, controlling c nodes of the network, to be able to locate all the
i introduction points when using valet nodes. The more valet nodes added per
IPo, the higher the probability of locating all (presence in all groups), and if
we add more IPos keeping the number of valet nodes constant the probability
goes down. We observe that the number of valet nodes is a more significant
factor than the number of introduction points. E.g. the strongest protection

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

P
ro

ba
bi

lit
y

of
 fi

nd
in

g
al

l i
nt

ro
du

ct
io

n
po

in
ts

Number of compromised nodes

v=3,i=3
v=3,i=5
v=3,i=7
v=3,i=9
v=1,i=3
v=1,i=5
v=1,i=7
v=1,i=9

Fig. 5. Probability of finding all i introduction points, each using v valet nodes in a
network of n=500 nodes

occurs in the case of using only a single valet node per IPo, but this will as
previously mentioned affect the service’s availability. Using only one valet node
gives an insider adversary the same number of nodes to attack. We also observe
that when using nine introduction points and only one valet node per IPo, the
adversary will have to control around 400 nodes in order to have the same 10%
probability of locating them all.

So this is a question of balancing availability with security (anonymity). Even
if the service is now involving more nodes in the network, unavailability will only
happen if all introduction points are down or if the combination of either all the
IPos or their associated valet nodes are down at the same time. Given that the
introduction points now are hidden from the public, we find that the removal of
targeted DoS attacks is more significant than the introduction of more nodes. In
Fig. 6 we compare the relative distributions of a network of 100 and 1000 nodes
and observe only tiny variations in the probability distribution caused by the
changing relative sizes of i and v compared to c and n.

Based on this we estimate that good protection of the service should consist
of at least three introduction point combined with at least two valet nodes per
introduction point, and should be combined with the possibility of differentiated
QoS as described in Sect. 4.2.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

P
ro

ba
bi

lit
y

of
 fi

nd
in

g
al

l i
nt

ro
du

ct
io

n
po

in
ts

Number of compromised nodes

n=100,v=10
n=100,v=5
n=100,v=3
n=100,v=2
n=100,v=1

n=1000,v=10
n=1000,v=5
n=1000,v=3
n=1000,v=2
n=1000,v=1

Fig. 6. Comparing n=1000 to an upscaled n=100 for a service using three introduction
points with varying number of valet nodes.

4.2 Quality of Service

As described in Sect. 3.2 we can now differentiate QoS for the users. But there
are potential problems with the described methods.

If a user wants to stay anonymous and untraceable he must start with a public
ticket every time (the paranoid variant), or trust the service to supply semi-public
tickets for every connection, which e.g. the user can check by connecting multiple
times using the public ticket(s). As these are open public services connected to
by anonymous clients this is a simple verification.

When it comes to authorized users, a service may access the Rendezvous
Point through different nodes giving a specific (“deserved”) bandwidth to the
user. This might reduce the set of nodes the service is selecting from during set
up of the tunnel.

4.3 MitM Attack

The Valet Service node will not be an additional danger for performing a man-
in-the-middle attack because the Client is able to authenticate the Introduction
Point by the use of its service key pair. And, as in the current version of the
hidden service protocol, the Introduction Point will not be able to perform a
MitM attack due to the authentication of the hidden service.

4.4 DoS Attacks

A client connecting multiple times to a Valet node and sending messages request-
ing decryption of the Valet Token and extension of circuits may cause a problem
for the Valet node. But a Valet node should only need to unpack a Token once,
and then may cache it for later reuse within its lifetime. The other actions are
normal extension, involving the Client, and simple forwarding of information,
so this should not be easy to abuse. By not accepting extension requests twice
for the same tunnel, the attacker may be forced to set up a new tunnel through
another node before every attempt.

Sending multiple connection requests to the Introduction Point could be a
potential problem. But if all Introduction Points tear down their connection
circuits upon finishing a connection, the Client will be forced to perform too
many operations compared with the effect created on the Introduction Point. If
it becomes necessary, an Introduction Point can simply ignore service requests
from specific Valet nodes.

If the chosen Valet node is down, a Client simply chooses another Valet node
in the ticket. If they are all down or unavailable, this will affect every client using
the same ticket. But the Valet nodes should be as many and constructed in such
a way that it is possible for a user to either use a long term ticket previously
received, or use an anonymous ticket for a first connection. There should be
enough variety in the construction of the tickets to make it prohibitively difficult
for an adversary to take down all Valet nodes of a service even if she did know
them all.

This should apply to the Introduction Points as well, so we must make certain
that Valet nodes only know the same Introduction Point for the same service to
minimize this threat factor.

A large threat to the public tickets scheme is uploading of false tickets to the
Directory Servers (or into the DHT). For known services it is easy to counter
by signing, but for encrypted tickets this is an issue. We proposed a reverse
hash chain scheme (Sect. 3.2) to counter this since the false updates will be
invalid. But the scheme will raise issues in synchronization of directory servers
and DHTs, which we will not address here.

4.5 Ticket Problems

If a client lost its ticket or the ticket expires, it must either use a long term ticket,
or download a new contact information ticket from the network. If authentication
is required, or if the client has a privileged QoS, this can now be resubmitted
and the next ticket received should get the client back on the same level of
QoS. Another way of restoring QoS even to anonymous users is to store this
information in separate cookies alongside the tickets.

So what if the public key of the hidden service has become exposed to some-
one who should not have it? Will we have any possibility to hide the hidden
service again once we are “found”? Not with today’s design. But if we require
authentication and there is suspicion of someone knowing the .onion address and

thereby having the Contact Information (e.g. by lots of valid connection requests
with false authentication information), the protocol could be extended to dis-
tribute new public key information with the new Contact Information upon the
next authenticated request.

4.6 Colluding connection nodes

If one of the service’s Valet nodes happens to be colluding with the Client, it
will be able to collect information about at least one Introduction Point to this
service. This takes us to the same scenario as in the current version of the hidden
service design, except that now we also have several other Introduction Points
that will continue to route users to the service thus maintaining availability.
Adversary Alice must now own a node in every set of Valet Service nodes used
for the Introduction Points, something which should be highly unlikely if the
grouping of nodes are constructed with this in mind.

Alice will not be able to find out if she owns an Introduction Point unless
she also owns the corresponding Valet node or the Client. As a Valet node she
will know if she also controls the Introduction Point, but she will not be able to
confirm which service this is until she gets the corresponding ticket. As a Client
there is the possibility of matching the DH-exchange and thereby determine if
she controls the Introduction Point. But even if Alice should happen to find one
of her nodes as an Introduction Point this would still not reveal any additional
information over the currently deployed system, where a node can trivially know
the service for which it is chosen to be an Introduction Point.

5 Conclusion

Hidden services are now widely deployed and of increasing interest for individ-
uals, corporations, governments, and organizations. We have here presented an
extension of the current hidden service design that improves availability and
resistance to DoS through the introduction of valet nodes, which hide service in-
troduction points. The new design also facilitates the use of “completely hidden
services”: only clients that know a hidden service’s .onion address or its public
key will be able to connect to it or even verify it’s existence. The new protocol
also allows differentiation of the quality of service given to clients, regardless of
whether they are anonymous or authenticated.

References

1. Ross J. Anderson. The eternity service. In Proceedings of Pragocrypt ’96, 1996.

2. The Anonymizer. http://www.anonymizer.com/.

3. Krista Bennett and Christian Grothoff. GAP – practical anonymous networking. In
Roger Dingledine, editor, Proceedings of Privacy Enhancing Technologies workshop
(PET 2003). Springer-Verlag, LNCS 2760, March 2003.

4. Oliver Berthold, Hannes Federrath, and Stefan Köpsell. Web MIXes: A system
for anonymous and unobservable Internet access. In H. Federrath, editor, Proceed-
ings of Designing Privacy Enhancing Technologies: Workshop on Design Issues in
Anonymity and Unobservability, pages 115–129. Springer-Verlag, LNCS 2009, July
2000.

5. Nikita Borisov. Anonymous Routing in Structured Peer-to-Peer Overlays. PhD
thesis, UC Berkeley, Spring 2005.

6. Philippe Boucher, Adam Shostack, and Ian Goldberg. Freedom systems 2.0 archi-
tecture. White paper, Zero Knowledge Systems, Inc., December 2000.

7. David Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 4(2), February 1981.

8. Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong. Freenet:
A distributed anonymous information storage and retrieval system. In Proceed-
ings of Designing Privacy Enhancing Technologies: Workshop on Design Issues in
Anonymity and Unobservability, pages 46–66, July 2000.

9. George Danezis, Chris Lesniewski-Laas, M. Frans Kaashoek, and Ross Anderson.
Sybil-resistant dht routing. In Computer Security – ESORICS 2005, September
2005.

10. Roger Dingledine, Michael J. Freedman, and David Molnar. The Free Haven
Project: Distributed anonymous storage service. In H. Federrath, editor, Proceed-
ings of Designing Privacy Enhancing Technologies: Workshop on Design Issues in
Anonymity and Unobservability. Springer-Verlag, LNCS 2009, July 2000.

11. Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-
generation onion router. In Proceedings of the 13th USENIX Security Symposium,
August 2004.

12. R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee. Hypertext transfer protocol – http/1.1. IETF RFC 2616, June 1999.

13. Ian Goldberg. A Pseudonymous Communications Infrastructure for the Internet.
PhD thesis, UC Berkeley, December 2000.

14. David M. Goldschlag, Michael G. Reed, and Paul F. Syverson. Hiding Routing
Information. In R. Anderson, editor, Proceedings of Information Hiding: First
International Workshop, pages 137–150. Springer-Verlag, LNCS 1174, May 1996.

15. Aviel D. Rubin Marc Waldman and Lorrie Faith Cranor. Publius: A robust,
tamper-evident, censorship-resistant, web publishing system. In Proceedings of
the 9th USENIX Security Symposium, pages 59–72, August 2000.

16. Steven J. Murdoch and George Danezis. Low-cost traffic analysis of Tor. In
Proceedings of the 2005 IEEE Symposium on Security and Privacy. IEEE CS, May
2005.

17. Lasse Øverlier and Paul Syverson. Locating hidden servers. In Proceedings of the
2006 IEEE Symposium on Security and Privacy. IEEE CS, May 2006.

18. Andreas Pfitzmann, Birgit Pfitzmann, and Michael Waidner. ISDN-mixes: Un-
traceable communication with very small bandwidth overhead. In Proceedings of
the GI/ITG Conference on Communication in Distributed Systems, pages 451–463,
February 1991.

19. Proxify.com. http://www.proxify.com/.

20. Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Schenker.
A scalable content-addressable network. In SIGCOMM ’01: Proceedings of the 2001
conference on Applications, technologies, architectures, and protocols for computer
communications, pages 161–172, New York, NY, USA, 2001. ACM Press.

21. Jean-François Raymond. Traffic Analysis: Protocols, Attacks, Design Issues, and
Open Problems. In H. Federrath, editor, Proceedings of Designing Privacy Enhanc-
ing Technologies: Workshop on Design Issues in Anonymity and Unobservability,
pages 10–29. Springer-Verlag, LNCS 2009, July 2000.

22. Michael Reiter and Aviel Rubin. Crowds: Anonymity for web transactions. ACM
Transactions on Information and System Security, 1(1), June 1998.

23. Antony Rowstron and Peter Druschel. Pastry: Scalable, distributed object location
and routing for large-scale peer-to-peer systems. In IFIP/ACM International Con-
ference on Distributed Systems Platforms (Middleware), pages 329–350, November
2001.

24. Andrei Serjantov and Peter Sewell. Passive attack analysis for connection-based
anonymity systems. In Computer Security – ESORICS 2003, October 2003.

25. Angelos Stavrou and Angelos D. Keromytis. Countering DoS attacks with stateless
multipath overlays. In CCS ’05: Proceedings of the 12th ACM conference on Com-
puter and communications security, pages 249–259, New York, NY, USA, 2005.
ACM Press.

26. Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakr-
ishnan. Chord: A scalable peer-to-peer lookup service for internet applications. In
SIGCOMM ’01: Proceedings of the 2001 conference on Applications, technologies,
architectures, and protocols for computer communications, pages 149–160, New
York, NY, USA, 2001. ACM Press.

27. Marc Waldman and David Mazières. Tangler: a censorship-resistant publishing
system based on document entanglements. In Proceedings of the 8th ACM Con-
ference on Computer and Communications Security (CCS 2001), pages 126–135,
November 2001.

28. Matthew Wright, Micah Adler, Brian Neil Levine, and Clay Shields. An analysis
of the degradation of anonymous protocols. In Proceedings of the Network and
Distributed Security Symposium - NDSS ’02. IEEE, February 2002.

29. Matthew K. Wright, Micah Adler, Brian Neil Levine, and Clay Shields. The pre-
decessor attack: An analysis of a threat to anonymous communications systems.
ACM Trans. Inf. Syst. Secur., 7(4):489–522, 2004. A preliminary version of this
paper appeared in [28].

30. Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C. Rhea, Anthony D. Joseph, and
John Kubiatowicz. Tapestry: A resilient global-scale overlay for service deployment.
IEEE Journal on Selected Areas in Communications, 22(1):41–53, 2004.

